Derivata della funzione inversa

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (derivata della funzione inversa) Sia $f:(a,b) \to \mathbb{R}$ continua, ed invertibile in (a,b). Sia inoltre f derivabile in $x_0 \in (a,b)$. Detta g l'inversa di f in (a,b) sia g definita in $\{f(x):x\in(a,b)\}$. Sia inoltre $f'(x_0)\neq 0$.

Allora, g è derivabile in $y_0 = f(x_0)$, e la sua derivata vale: $g'(y_0) = \frac{1}{f'(x_0)}$

Dimostrazione:

Sia $y \in \{f(x) : x \in (a,b)\} \setminus \{y_0\}$, e consideriamo il rapporto incrementale di g

$$\frac{g(y) - g(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)}$$
(1)

L'ugualianza è valida in quanto g(y) = x, $g(y_0) = x_0$, f(y) = x, $f(y_0) = x_0$. Poichè g è l'inversa di una funzione continua è continua, ed essendo invertibile è anche monotona. Quindi $y \neq y_0 \iff x \neq x_0$. Ma $y \neq y_0$, quindi anche $x \neq x_0$, inoltre $f(x) \neq f(x_0)$. Quindi possiamo riscrivere la (1)

$$\frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}}$$
(2)

Consideriamo $g(y) - g(y_0) = x - x_0$, ed osserviamo che g è continua, quindi per $y \to y_0$ anche $x \to x_0$, e possiamo scrivere:

$$\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)}$$

Che è quanto volevamo dimostrare.